Switchable bioelectronics.
نویسندگان
چکیده
We review the rapidly emerging field of switchable interfaces and its implications for bioelectronics. We seek to piece together early breakthroughs and key developments, and highlight and discuss the future of switchable bioelectronics by focusing on bio-electrochemical processes based on mimicking and controlling biological environments with external stimuli. All these studies strive to answer a fundamental question: "how do living systems probe and respond to their surroundings? And, following on from that: "how one can transform these concepts to serve the practical world of bioelectronics?" The central obstacle to this vision is the absence of versatile interfaces that are able to control and regulate the means of communication between biological and electronic systems. Here, we review the overall progress made to date in building such interfaces at the level of individual biomolecules and focus on the latest efforts to generate device platforms that integrate bio-interfaces with electronics.
منابع مشابه
Interfacing nanomaterials for bioelectronic applications
The integration of nanomaterials as a bridge between the biological and electronic worlds has revolutionised understanding of how to generate functional bioelectronic devices and has opened up new horizons for the future of bioelectronics. The use of nanomaterials as a versatile interface in the area of bioelectronics offers many practical solutions and has recently emerged as a highly promisin...
متن کاملOn/Off-switchable zipper-like bioelectronics on a graphene interface.
An on/off-switchable graphene-based zipper-like interface is architectured for efficient bioelectrocatalysis. The graphene interface transduces a temperature input signal into structural changes of the membrane, resulting in the amplification of electrochemical signals and their transformation into the gated transport of molecules through the membrane.
متن کاملProgrammable bioelectronics in a stimuli-encoded 3D graphene interface.
The ability to program and mimic the dynamic microenvironment of living organisms is a crucial step towards the engineering of advanced bioelectronics. Here, we report for the first time a design for programmable bioelectronics, with 'built-in' switchable and tunable bio-catalytic performance that responds simultaneously to appropriate stimuli. The designed bio-electrodes comprise light and tem...
متن کاملFrom MEMS to NEMS with carbon.
Our work in carbon-microelectromechanical systems (C-MEMS) suggests that C-MEMS might provide a very interesting material and microfabrication approach to battery miniaturization, active DNA arrays and a wide variety of chemical and biological sensors. In C-MEMS, photoresist is patterned by photolithography and subsequently pyrolyzed at high-temperatures in an oxygen-free environment. We establ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biosensors & bioelectronics
دوره 76 شماره
صفحات -
تاریخ انتشار 2016